
Regular Expressions for Perl, C, PHP,
Python, Java, and .NET

Tony Stubblebine

Pocket Reference

Regular
Expression

Regular Expression
Pocket Reference

Regular Expression
Pocket Reference

Tony Stubblebine

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

PHP | 63

PHP
This reference covers PHP 4.3’s Perl-style regular expression
support contained within the preg routines. PHP also pro-
vides POSIX-style regular expressions, but these do not offer
additional benefit in power or speed. The preg routines use a
Traditional NFA match engine. For an explanation of the
rules behind an NFA engine, see “Introduction to Regexes
and Pattern Matching.”

Supported Metacharacters
PHP supports the metacharacters and metasequences listed
in Tables 31 through 35. For expanded definitions of each
metacharacter, see “Regex Metacharacters, Modes,
and Constructs.”

Table 31. Character representations

Sequence Meaning

\a Alert (bell), x07.

\b Backspace, x08, supported only in character class.

\e ESC character, x1B.

\n Newline, x0A.

\r Carriage return, x0D.

\f Form feed, x0C.

\t Horizontal tab, x09

\octal Character specified by a three-digit octal code.

\xhex Character specified by a one- or two-digit hexadecimal code.

\x{hex} Character specified by any hexadecimal code.

\cchar Named control character.

Table 32. Character classes and class-like constructs

Class Meaning

[...] A single character listed or contained within a listed range.

64 | Regular Expression Pocket Reference

[^...] A single character not listed and not contained within a listed
range.

[:class:] POSIX-style character class valid only within a regex character
class.

. Any character except newline (unless single-line mode,/s).

\C One byte; however, this may corrupt a Unicode character
stream.

\w Word character, [a-zA-z0-9_].

\W Non-word character, [^a-zA-z0-9_].

\d Digit character, [0-9].

\D Non-digit character, [^0-9].

\s Whitespace character, [\n\r\f\t].

\S Non-whitespace character, [^\n\r\f\t].

Table 33. Anchors and zero-width tests

Sequence Meaning

^ Start of string, or after any newline if in multiline match mode,
/m.

\A Start of search string, in all match modes.

$ End of search string or before a string-ending newline, or before
any newline if in multiline match mode, /m.

\Z End of string or before a string-ending newline, in any match
mode.

\z End of string, in any match mode.

\G Beginning of current search.

\b Word boundary; position between a word character (\w) and a
non-word character (\W), the start of the string, or the end of
the string.

\B Not-word-boundary.

(?=...) Positive lookahead.

(?!...) Negative lookahead.

(?<=...) Positive lookbehind.

Table 32. Character classes and class-like constructs

Class Meaning

PHP | 65

(?<!...) Negative lookbehind.

Table 34. Comments and mode modifiers

Modes Meaning

i Case-insensitive matching.

m ^ and $ match next to embedded \n.

s Dot (.) matches newline.

x Ignore whitespace and allow comments (#) in pattern.

U Inverts greediness of all quantifiers: * becomes lazy and *?
greedy.

A Force match to start at search start in subject string.

D Force $ to match end of string instead of before the string
ending newline. Overridden by multiline mode.

u Treat regular expression and subject strings as strings of multi-
byte UTF-8 characters.

(?mode) Turn listed modes (imsxU) on for the rest of the subexpression.

(?-mode) Turn listed modes (imsxU) off for the rest of the subexpression.

(?mode:...) Turn mode (xsmi) on within parentheses.

(?-mode:...) Turn mode (xsmi) off within parentheses.

(?#...) Treat substring as a comment.

#... Rest of line is treated as a comment in x mode.

\Q Quotes all following regex metacharacters.

\E Ends a span started with \Q.

Table 35. Grouping, capturing, conditional, and control

Sequence Meaning

(...) Group subpattern and capture submatch into \1,\2,…

(?P<name>…) Group subpattern and capture submatch into named capture
group, name.

\n Contains the results of the nth earlier submatch from a
parentheses capture group or a named capture group.

Table 33. Anchors and zero-width tests

Sequence Meaning

66 | Regular Expression Pocket Reference

(?:...) Groups subpattern, but does not capture submatch.

(?>...) Disallow backtracking for text matched by subpattern.

...|... Try subpatterns in alternation.

* Match 0 or more times.

+ Match 1 or more times.

? Match 1 or 0 times.

{n} Match exactly n times.

{n,} Match at least n times.

{x,y} Match at least x times but no more than y times.

*? Match 0 or more times, but as few times as possible.

+? Match 1 or more times, but as few times as possible.

?? Match 0 or 1 time, but as few times as possible.

{n,}? Match at least n times, but as few times as possible.

{x,y}? Match at least x times, no more than y times, and as few times
as possible.

*+ Match 0 or more times, and never backtrack.

++ Match 1 or more times, and never backtrack.

?+ Match 0 or 1 times, and never backtrack.

{n}+ Match at least n times, and never backtrack.

{n,}+ Match at least n times, and never backtrack.

{x,y}+ Match at least x times, no more than y times, and never
backtrack.

(?(condition)
...|...)

Match with if-then-else pattern. The condition can be either
the number of a capture group or a lookahead or lookbehind
construct.

(?(condition)
...)

Match with if-then pattern. The condition can be either the
number of a capture group or a lookahead or lookbehind
construct.

Table 35. Grouping, capturing, conditional, and control (continued)

Sequence Meaning

PHP | 67

Pattern-Matching Functions
PHP provides several standalone functions for pattern
matching. When creating regular expression strings, you
need to escape embedded backslashes; otherwise, the back-
slash is interpreted in the string before being sent to the regu-
lar expression engine.

array preg_grep (string pattern, array input)

Return array containing every element of input matched
by pattern.

int preg_match_all (string pattern, string subject, array
matches [, int flags])

Search for all matches of pattern against string and
return the number of matches. The matched substrings
are placed in the matches array. The first element of
matches is an array containing the text of each full match.
Each additional element N of matches is an array contain-
ing the Nth capture group match for each full match. So
matches[7][3] contains the text matches by the seventh
capture group in the fourth match of pattern in string.

The default ordering of matches can be set explicitly with
the PREG_SET_ORDER flag. PREG_SET_ORDER sets a more intu-
itive ordering where each element of matches is an array
corresponding to a match. The zero element of each
array is the complete match, and each additional ele-
ment corresponds to a capture group. The additional flag
PREG_OFFSET_CAPTURE causes each array element contain-
ing a string to be replaced with a two-element array con-
taining the same string and starting character position in
subject.

int preg_match (string pattern, string subject [, array
matches [, int flags]])

Return 1 if pattern matches in subject, otherwise return
0. If the matches array is provided, the matched substring
is placed in matches[0] and any capture group matches
are placed in subsequent elements. One allowed flag,
PREG_OFFSET_CAPTURE, causes elements of matches to be

68 | Regular Expression Pocket Reference

replaced with a two-element array containing the
matched string and starting character position of the
match.

string preg_quote (string str [, string delimiter])

Return a str with all regular expression metacharacters
escaped. Provide the delimiter parameter if you are
using optional delimiters with your regular expression
and need the delimiter escaped in str.

mixed preg_replace_callback (mixed pattern, callback
callback, mixed subject [, int limit])

Return text of subject with every occurrence of pattern

replaced with the results of callback. The callback should
take one parameter, an array containing the matched text
and any matches from capture groups. If provided, the
function performs no more than limit replacements. If
pattern has the /e modifier, replacement is parsed for
reference substitution and then executed as PHP code.

If pattern is an array, each element is replaced with
callback. If subject is an array, the function iterates over
each element.

mixed preg_replace (mixed pattern, mixed replacement, mixed
subject [, int limit])

Return text of subject with every occurrence of pattern

replaced with replacement. If provided, the function per-
forms no more than limit replacements. The replace-
ment string may refer to the match or capture group
matches with $n (preferred) or \n (deprecated). If pattern
has the /e modifier, replacement is parsed for reference
substitution and then executed as PHP code.

If pattern is an array, then each element is replaced with
replacement or, if replacement is an array, the corre-
sponding element in replacement. If subject is an array,
the function iterates over each element.

PHP | 69

array preg_split (string pattern, string subject [, int
limit [, int flags]])

Return an array of strings broken around pattern. If
specified, preg_split() returns no more than limit sub-
strings. A limit is the same as “no limit,” allowing you to
set flags. Available flags are: PREG_SPLIT_NO_EMPTY, return
only non-empty pieces; PREG_SPLIT_DELIM_CAPTURE, return
captured submatches after each split substring; and PREG_

SPLIT_OFFSET_CAPTURE, return an array of two-element
arrays where the first element is the match and the sec-
ond element is the offset of the match in subject.

Examples

Example 19. Simple match

//Match Spider-Man, Spiderman, SPIDER-MAN, etc.

$dailybugle = "Spider-Man Menaces City!";

$regex = "/spider[-]?man/i";

if (preg_match($regex, $dailybugle)) {

 //do something

}

Example 20. Match and capture group

//Match dates formatted like MM/DD/YYYY, MM-DD-YY,...

$date = "12/30/1969";

$p = "!(\\d\\d)[-/](\\d\\d)[-/](\\d\\d(?:\\d\\d)?)!";

if (preg_match($p,$date,$matches) {

 $month = $matches[1];

 $day = $matches[2];

 $year = $matches[3];

}

Example 21. Simple substitution

//Convert
 to
 for XHTML compliance

$text = "Hello world.
";

$pattern = "{
}i";

70 | Regular Expression Pocket Reference

Other Resources
• PHP’s online documentation at http://www.php.net/pcre.

echo preg_replace($pattern, "
", $text);

Example 22. Harder substitution

//urlify - turn URL's into HTML links

$text = "Check the website, http://www.oreilly.com/catalog/

repr.";

$regex =

 "{ \\b # start at word\n"

 . " # boundary\n"

 . "(# capture to $1\n"

 . "(https?|telnet|gopher|file|wais|ftp) : \n"

 . " # resource and colon\n"

 . "[\\w/\\#~:.?+=&%@!\\-]+? # one or more valid\n"

 . " # characters\n"

 . " # but take as little as\n"

 . " # possible\n"

 . ")\n"

 . "(?= # lookahead\n"

 . "[.:?\\-]* # for possible punct\n"

 . "(?:[^\\w/\\#~:.?+=&%@!\\-] # invalid character\n"

 . "|$) # or end of string\n"

 . ") }x";

echo preg_replace($regex, "$1", $text);

Example 21. Simple substitution (continued)

